Random forest algorithm

Random Forest is one of the most popular and most powerful machine learning algorithms. It is a type of ensemble machine learning algorithm called Bootstrap Aggregation or bagging.
The bootstrap is a powerful statistical method for estimating a quantity from a data sample. Such as a mean. You take lots of samples of your data, calculate the mean, then average all of your mean values to give you a better estimation of the true mean value.
In bagging, the same approach is used, but instead for estimating entire statistical models, most commonly decision trees.
Multiple samples of your training data are taken then models are constructed for each data sample. When you need to make a prediction for new data, each model makes a prediction and the predictions are averaged to give a better estimate of the true output value.
Random forest is a tweak on this approach where decision trees are created so that rather than selecting optimal split points, suboptimal splits are made by introducing randomness.
The models created for each sample of the data are therefore more different than they otherwise would be, but still accurate in their unique and different ways. Combining their predictions results in a better estimate of the true underlying output value.
If you get good results with an algorithm with high variance (like decision trees), you can often get better results by bagging that algorithm.

Features of Random Forests

  • It is unexcelled in accuracy among current algorithms.
  • It runs efficiently on large data bases.
  • It can handle thousands of input variables without variable deletion.
  • It gives estimates of what variables are important in the classification.
  • It generates an internal unbiased estimate of the generalization error as the forest building progresses.
  • It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing.
  • It has methods for balancing error in class population unbalanced data sets.
  • Generated forests can be saved for future use on other data.
  • Prototypes are computed that give information about the relation between the variables and the classification.
  • It computes proximities between pairs of cases that can be used in clustering, locating outliers, or (by scaling) give interesting views of the data.
  • The capabilities of the above can be extended to unlabeled data, leading to unsupervised clustering, data views and outlier detection.
  • It offers an experimental method for detecting variable interactions.

Comments

Popular posts from this blog

Boosting and AdaBoost algorithm.

Decision tree